DEMENTIA, HEARING LOSS AND HEARING CARE:

Saving Australia’s Minds

The compelling peer-reviewed evidence for early hearing care intervention to prevent dementia

WHITE PAPER
MARCH 2021
Dementia, Hearing Loss and Hearing Care: Saving Australia’s Minds.

The compelling peer-reviewed evidence for early hearing care intervention to prevent dementia

A White Paper prepared by
Mark Laureyns
for the Hearing Care Industry Association, Australia

© 2021 Hearing Care Industry Association, Australia
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the Hearing Care Industry Association, Australia.

About the Author
Mark Laureyns’ professional career spans 40 years in hearing health care. He is the current co-chair of the World Hearing Forum ‘Make Listening Safe Workgroup’ an initiative of the World Health Organisation. He is the elected President of the European Association of Hearing Aid Professionals, a position he has held since 2014. He is the Director of the Global International CRS (Amplifon Centre for Research and Studies) in Milan, Italy. Mark lectures in Hearing Aid Fitting at the Thomas More University College, Department of Audiology in Antwerp. His field of research spans the relationship between hearing and cognition, central auditory processing, safe listening practices, the added value of hearing aid signal processing, hearing and burnout, diabetes and hearing loss, and quality professional hearing care – and was well-placed to review the international research into the relationship between hearing and dementia. He is a highly experienced and qualified Audiologist and Speech Pathologist.

Mark can be contacted via: Mark.Laureyns@Thomasmore.be
Contents

Foreword ... 3
Introduction ... 5
Key themes in Research ... 7
 Relationship between Hearing Loss and Cognitive Decline 7
 The Physiology and Biology of the Relationship between Hearing Loss and Cognitive Decline ... 7
 The impact of Hearing Treatment on Cognitive Decline 8
 The Economic Aspects of Hearing Care to Delay or Prevent Dementia 9
Dementia Prevention and Hearing Care ... 9
Conclusions ... 10
Appendix .. 11
 Studies on the effect of hearing loss correction, with hearing aids and cochlear implants on the reduction of cognitive decline. 11
 Studies on the relationship between hearing loss and dementia 15
 Studies on animal models of the relationship hearing loss and dementia 19
 Studies on human brain tissue, biomarker, changes in the relationship hearing loss and dementia .. 20
 The economic aspects of hearing care to delay or prevent dementia 22
References ... 23
Foreword

This white paper covers the most current research into hearing loss, hearing care and dementia. Every research article quoted in this paper has been published in a peer-reviewed journal in the last four years. It has been commissioned by the Hearing Care Industry Association of Australia (HCIA). In the context of World Hearing Day 2021, it aims to draw the attention of policy makers to the urgency in addressing age-related hearing loss to avoid much greater healthcare burdens – specifically dementia. The Royal Commission into Aged Care Quality and Safety also raised the increasing challenges faced by the Aged Care sector in relation to Dementia.

Dementia is now the second leading cause of death in Australia and the leading cause of death among women. It is a highly visible disease, with over 472,000 people with dementia in Australia. This number is expected to grow to 590,000 in the next seven years and pass 1,000,000 in 2058. It is also currently estimated that over half of all aged care residents in Australia have dementia. The process of ageing need not be associated with decreased quality of life, depression or cognitive decline to a point of dementia.

Hearing loss in mid-life is the largest modifiable risk factor for age-related dementia.

This white paper highlights the scientific link between hearing loss and cognitive decline, and the positive impact early intervention through access to appropriate hearing aids and associated services can have on reducing the risk of dementia. This data presents policy makers with a critical choice relating to early hearing treatment intervention and reducing the impact of dementia.

Deferring hearing care treatment until well into old age is often too late. The cognitive decline and deficit are often well established, and they result in greater difficulties for an aged person to effectively and confidently adapt physically and psychologically to any hearing care support. An aged care resident with a hearing aid languishing in a drawer is a travesty and sadly, a common occurrence.

Within the context of an ageing population and increasing costs of providing aged care, now is the time to seize the opportunity for a preventative hearing health strategy that will address the link between age-related hearing loss and dementia.

Australia has an opportunity to lead the world in life-long hearing health care by actively funding those in mid-life (40-64 years) to have their hearing tested and when appropriate, access to hearing aids and associated services.

The HCIA thanks Mark Laureyns for his contribution to this important public policy issue.

Mr Ashley Wilson AM
Chair, HCIA
Introduction

When Dr Richard Uhlmann and colleagues from the University of Washington published their article, “Relationship of Hearing Impairment to Dementia and Cognitive Dysfunction in Older Adults” in 1989 (ref 100), it did not attract a lot of interest. Only when Dr Frank Lin and colleagues from The Johns Hopkins School of Medicine in Baltimore published their findings, “Hearing Loss and Incident Dementia” in 2011 (ref 95), did the topic of the relationship between hearing loss and dementia start to gain attention in academic and health care systems as well as mainstream media. Interestingly, the findings from Uhlmann and Lin were very comparable, although the methodology was different. In the Uhlmann case control study, a matched design was used (100 subjects), while in the Lin study was longitudinal in design (690 subjects were followed between 2008 and 2011). These studies both concluded that the risk (odds to hazard ratio) of developing dementia increased significantly with increasing hearing loss.

Since 2011, many studies have followed. This whitepaper focuses on research that has studied the various aspects of the relationship between hearing loss and dementia, and has been published in peer reviewed scientific journals from 2017 to March 2021. In total, 90 publications met the inclusion criteria for review in this whitepaper (see references).
Dementia is now the second leading cause of death in Australia. 1 in 10 over 65’s have dementia costing the economy more than $15 billion.

The risk of developing dementia increases significantly with increasing hearing loss.

Hearing loss in mid-life is the largest modifiable risk factor for age-related dementia.

The benefits of reducing the symptoms of dementia relative to the total cost of hearing aids is a ratio of around 30:1.

Unaddressed hearing loss was identified as responsible for more dementia among older adults than other risk factors including alcohol overconsumption, traumatic brain injury, obesity and hypertension combined.
Key themes in Research

The research has focused on four key areas, as follows:

- The relationship between hearing loss and cognitive decline.
- The physiology and biology of this relationship.
- The impact of hearing treatment on cognitive decline.
- The economic impact.

The following section will focus on the findings in these critical areas of hearing loss and cognitive decline.

Relationship between Hearing Loss and Cognitive Decline

Following on from the initial work of Dr Richard Uhlmann and colleagues (ref 100) and Dr Frank Lin (ref 95), substantial effort has gone into further understanding this critical relationship between hearing loss and cognitive decline. In the 90 peer reviewed research papers we have collated, we will highlight the findings of six studies that explore this relationship, as follows:

- Hearing loss is positively associated with risk of Mild Cognitive Impairment (MCI) and dementia (ref 66) and this correlation has been established in an Australian population based study. (ref 55)
- The impact of severity of hearing loss on dementia incidence has been established. (ref 13)
- The risk of cognitive decline increases with a younger age of hearing loss onset. (ref 13)
- The risk is especially prevalent in patients aged 45 – 64 years. (ref 66)
- The role of a marginal hearing loss (or subclinical hearing loss) in increasing the risk of cognitive decline has been identified (ref 24) supporting further consideration of treating marginal hearing losses.
- The risk of dementia was higher among patients with sudden hearing loss onset. (ref 37)
- The role of other comorbidities, specifically diabetes, with hearing loss, is associated with a higher risk of incident dementia. (ref 56)

This body of work substantiates the positive association between hearing loss and higher risk of cognitive decline or dementia.

The Physiology and Biology of the Relationship between Hearing Loss and Cognitive Decline

As part of the process of understanding the association and the possible effective treatments to reduce this association, the research assessed the physiological and biological models and markers of this relationship. Initially the research studied animal models and found:
Specific biomarkers for Alzheimer’s disease were related to cognitive impairment after hearing loss in a rat-model. (ref 45)

Hearing loss may act as a risk factor for cognitive impairment in Alzheimer’s disease due to indications that hearing loss may cause a part of the brain (hippocampal synapses) to be more vulnerable to a biomarker (Amyloid-ß (Aß) for Alzheimer’s disease. (ref 59)

These results were replicated and further understood in human brain tissue, as follows:

- Hearing loss is associated with higher levels of β-amyloid, a key biomarker for Alzheimer’s disease. (ref 45)
- Age-related hearing loss (presbycusis) causes reduced auditory nerve responses, which is associated with slower processing speed and brain structural changes in temporal and parietal regions. (ref 19)

This evidence provided an impetus to understand the effect of treating hearing loss to reduce the risk of cognitive decline.

The impact of Hearing Treatment on Cognitive Decline.

The most effective, and therefore most common mode of hearing loss treatment or intervention is hearing aids and/or hearing implants (such as cochlear implants). This body of research focused on the benefits of hearing aids and/or implants and cognitive functioning, as follows:

- Well-fitted hearing amplification may promote more typical cortical organization and functioning and provide cognitive benefit. (ref 22)
- Treatment of hearing loss with hearing aids may delay cognitive decline. (ref 13)
- Although hearing loss and cognition are linked, untreated hearing loss drives this association. For subjects with hearing loss, using hearing aids, there was no difference compared to subjects with no hearing loss. (ref 73)
- Providing hearing aids or other rehabilitative services for hearing impairment much earlier in the course of hearing impairment may stem the worldwide rise of dementia. (ref 80)
- Cognitive decline associated with age-related hearing loss is probably preventable by early rehabilitation and increased opportunistic screening for the elderly. (ref 73)
- Self-reported hearing loss is associated with increased risk of disability, dementia, and also depression in men. Such increased risks were not evidenced in those older adults using hearing aids. (ref 1)

Further the positive mental health association with hearing aid and/or hearing implant was established:

- Hearing aid use was associated with fewer Neuro-Psychiatric-Symptoms, lower severity, and less severe depressive symptoms. (ref 35)
- Identifying and addressing hearing loss may be a promising, low-risk, non-pharmacological intervention in preventing and treating Neuro-Psychiatric-Symptoms. (ref 35)
The Economic Aspects of Hearing Care to Delay or Prevent Dementia

Currently research is emerging on the cost-benefit analysis of hearing aids in reducing the incidence and the severity of dementia. One study (ref 58) has assessed the total benefits of hearing aids to reduce the symptoms of dementia, finding that the majority of the benefits were direct benefits, at a cost-benefit ratio of approximately 30. The economists deduced that the role of hearing aids in mitigating the rise of dementia should be acknowledged.

Dementia Prevention and Hearing Care

The rising prevalence of dementia resulted in The Lancet Commission publishing two reports (2017 and 2020) on “Dementia prevention, intervention, and care”. In both reports, hearing loss was identified as the modifiable risk factor for dementia with the highest positive impact in mid life (40-65 years of age).

Further, in the 2020 report The Lancet Commission noted the additional research on the association between hearing loss, hearing loss treatment and dementia risk (ref 1, 73 and 80), resulting in The Lancet authors recommending access to appropriate hearing services, that provides hearing aids and the help to wear the aids.

Fig 2. Weight of the modifiable risk factors for dementia. This graph is based on the data from “Livingston G. et al 2020”. The risk factors for “Early Life” (blue), “Midlife” (orange & green) and “Later life” (red) are grouped yellow.

On the 3rd of March 2021 (World Hearing Day), the World Health Organisation (WHO) launched the “World Report on Hearing”. The report highlights the synthesis of the research in this area. The WHO concluded:

- Hearing loss is the largest potentially modifiable risk factor for age-related dementia.
- Adult hearing screening and early intervention becomes even more relevant given the links between hearing loss and dementia.
- Addressing hearing through hearing devices may have a positive influence on an individual’s cognition.
- The use of hearing aids can also protect against cognitive decline and dementia.
- The use of hearing devices is shown to be cost-effective in different economic settings.

Conclusions

Dementia is now the second leading cause of death in Australia and the leading cause of death among women. It is a highly visible disease, with over 472,000 people suffering dementia in Australia. This number is expected to grow to 590,000 in the next seven years and pass 1,000,000 in 2058. It is also currently estimated that over half of all aged care residents in Australia have dementia. The process of ageing need not be associated with decreased quality of life, depression or cognitive decline to a point of dementia.

The peer reviewed published research has established the association between hearing loss and dementia; the positive impact of hearing intervention by means of hearing aids and/or hearing implants; and the economic impact of such intervention. The Lancet Commission crystallised this plethora of research with identifying hearing loss as the modifiable risk factor for dementia with the highest positive impact in mid life (40-65 years of age).

The recent WHO "World Report on Hearing" echoes the research, concluding for world leaders that hearing loss is the largest potentially modifiable risk factor for age-related dementia. Early intervention is warranted, it has a positive influence on cognition, reducing the risk of dementia and is cost-effective.

Further, in the near future, longitudinal interventional studies will become available on the impact of hearing care as a way to modify hearing loss as a risk factor for dementia.

The scientific community is in agreement and the consensus has been established on the role of hearing loss, hearing care and dementia. With the rising prevalence of dementia, and the devastating impact it has, the research will continue into this compelling public health area.

1 This report is available at: https://www.who.int/activities/highlighting-priorities-for-ear-and-hearing-care
Appendix

The details, results and conclusions found in the most recent research.

Studies on the effect of hearing loss correction, with hearing aids and cochlear implants on the reduction of cognitive decline.

JOURNAL OF CLINICAL MEDICINE
Amieva H. et al. Death, Depression, Disability, and Dementia Associated with Self-reported Hearing Problems. 2020 (ref 1)

In this French PAQUID longitudinal epidemiological study, a community of 3,777 people in the region of Bordeaux was followed up for 25 years. Hearing loss and hearing aid use was based on self-reports (1,289 self-reported hearing problems and 2,290 self-reported having no hearing problems). Dementia was diagnosed in three steps. Initially, an interview was conducted by a psychologist who also filled out a checklist for dementia. When results were positive, the participants were seen by a neurologist or geriatrician to double-check the diagnosis; and finally, all the available data was checked by an independent panel of neurologists who specialised in dementia.

- The subjects with self-reported hearing loss, had an increased risk of 1.18 (hazard ratio – p = 0.02) compared to subjects with self-reported normal hearing
- The subjects with self-reported hearing loss, not using hearing aids, had an increased risk (hazard ratio) of 1.21 (hazard ratio – p = 0.01) compared to subjects with self-reported normal hearing
- The subjects with self-reported hearing loss and using hearing aids, didn’t have an increased risk (hazard ratio) of 0.86 (hazard ratio – p = 0.48) compared to subjects with self-reported normal hearing.

The conclusions of this study: **Our study shows that self-reported hearing trouble is associated with increased risk of disability, dementia, and also depression in men. Such increased risks were not evidenced in those older adults using hearing aids. Because hearing impairment in older adults is both highly prevalent and treatable, these results highlight the importance of formally assessing the consequences of treating hearing loss in elders in further RCT studies.** [emphasis added]

JAMA OTOLARYNGOLOGY – HEAD & NECK SURGERY

This study was part of the English Longitudinal Study of Ageing (ELSA), in which 7,385 subjects, all living in the UK and in a community setting, met the criteria for this specific study. Hearing loss was evaluated with a hearing screener device (51.6% had hearing loss: 41.4% had mild hearing loss, with 10.2% with moderate-severe hearing loss). Hearing aid use was based on self-report (11% of the
total group and 22% of the group with hearing loss) and memory (recall of 10 uncorrelated words) and executive function (naming as many animals as they can in 60 seconds) were evaluated as measures of cognitive function.

- For subjects with mild hearing loss, the mean memory assessment score is a 0.5 point (95%CI) lower than those with no hearing loss
- For subjects with moderate-severe hearing loss, the mean memory assessment score is a 1 point (95%CI) lower than those with no hearing loss
- For subjects with hearing loss using hearing aids, there was no difference compared to subjects with no hearing loss. [emphasis added]

The conclusions of this study: Although hearing loss and cognition are linked, untreated hearing loss drives the association. Social isolation is a mediating factor in the link for those who have untreated hearing loss. Cognitive decline associated with ARHI is probably preventable by early rehabilitation and increased opportunistic screening for the elderly.

JOURNAL OF THE AMERICAN GERIATRICS SOCIETY
Maharani A. et al, Longitudinal Relationship Between Hearing Aid Use and Cognitive Function in Older Americans – 2018 (ref 80)

The study was based on data from the Health and Retirement Study (HRS), a longitudinal study in the US in which 20,000 participants were followed since 1990. This specific study only selected subjects from Wave 3 or later, since they wanted to include the memory scores using 10 words, subjects aged 50 years or older, and those who started to use hearing aids for the first time between Wave 4 and 11 of the study. This resulted in a sample of 2,040 subjects which were followed for 18 years (from 1996 to 2014). Hearing aid use was self-reported and episodic memory was evaluated by a 10-word immediate recall and delayed recall test.

- For all subjects, the results on the episodic memory test, reduced over time
 - Before the subjects started using hearing aids, the slope of decline was $\beta = -0.11$ ($p < 0.001$)
 - After the subjects started using hearing aids, the slope of decline was significantly smaller $\beta = -0.03$ ($p < 0.001$)
 - The use of hearing aids resulted in a better episodic memory score of $\beta = 2.13$ ($p < .001$)

The conclusions of this study: Hearing aids may have a mitigating effect on trajectories of cognitive decline in later life. Providing hearing aids or other rehabilitative services for hearing impairment much earlier in the course of hearing impairment may stem the worldwide rise of dementia.

- For all subjects, the results on the episodic memory test reduced of over time
 - Before the subjects started using hearing aids, the slope of decline was $\beta = -0.11$ ($p < 0.001$)
 - After the subjects started using hearing aids, the slope of decline was significantly smaller $\beta = -0.03$ ($p < 0.001$)
 - The use of hearing aids resulted in a better episodic memory score of $\beta = 2.13$ ($p < .001$)
FRONTIERS IN NEUROSCIENCE
Glick H & Sharma A. Cortical Neuroplasticity and Cognitive Function in Early-Stage, Mild-Moderate Hearing Loss: Evidence of Neurocognitive Benefit from Hearing Aid Use. 2020 (ref 22)

In this study, 41 subjects participated (average age 64 years) and they were all native English speakers. The test group consisted of 28 subjects with Age-Related Hearing Loss (ARHL) and had never previously used hearing aids. The control group consisted of 13 subjects with normal hearing and the two groups were gender and age matched. Hearing loss was evaluated with tonal audiometry (the High Pure Tonal Average - HPTA was calculated) and a speech in noise test (QuickSin). The ARHL group was fitted with hearing aids after the intake (quality fitting with verification and follow up) and used them for six months; and were required to wear them for at least five hours daily. Since eight participants dropped out, the final test group consisted of 21 subjects. In this study, the “cross-modal re-organization” (CMR) was also evaluated. This is a form of cortical compensation observed in subjects with severe and moderate levels of hearing loss whereby the auditory cortex is re-organised to process stimuli from intact visual and somatosensory modalities. CMR was evaluated by measuring Cortical Visual Evoked Potential Latencies. (CVEP Latency)

• The CVEP Latency P1 (ms) increased significantly with increasing hearing loss (HPTA in dBHL)
 \(r=0.74/p<0.001 \)
• The CVEP Latency P1 (ms) increased significantly with poorer QuickSin – Speech in Noise in Test scores (dB SNR loss)
 \(r=0.74/p<0.001 \)
• The CVEP Latency P1 (ms) improved significantly (=reduced in latency) post hearing aid fitting for the ARHL group
 \(t=4.15/p<0.001 \)

The conclusions of this study: Following clinical treatment with hearing aids, a reversal in cross-modal re-organisation of auditory cortex by vision was observed in the Age-Related Hearing Loss group, coinciding with gains in speech perception and cognitive performance. Thus, beyond the known benefits of hearing aid use on communication, outcomes from this study provide evidence that clinical intervention with well-fitted amplification may promote more typical cortical organization and functioning and provide cognitive benefit.

THE AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY
Kim A. et al, Association of Hearing Loss with Neuropsychiatric Symptoms in Older Adults with Cognitive Impairment. 2020 (ref 35)

The 101 participants (average age 76 years) who entered the study were recruited from the Johns Hopkins Memory and Alzheimer’s Treatment Center in Baltimore (US). Hearing Loss was measured with Tonal Audiometry (PTA better ear at 0.5, 1, 2 and 4 kHz; 67 per cent had hearing loss and 22 per cent were using hearing aids), the Neuro-Psychiatric-Symptoms (NPS) were evaluated with the Neuropsychiatric Inventory Questionnaire (NPI-Q) and Depression was evaluated with the Cornell Scale for Depression in Dementia (CSDD). All these tests were part of the routine care these patients were receiving in the Treatment Center.

• Hearing Loss (PTA) and the number of Neuro-Psychiatric-Symptoms (NPS) were positively related \(b = 0.7/10 \text{ dB}; 95\% \text{ CI} \) – The more severe the hearing loss, the higher the number of NPS
• Hearing Loss (PTA) and the NPS severity score were positively related (b = 1.3 /10 dB; 95% CI) – The more severe the hearing loss, the higher severity score of the NPS
• Hearing Loss (PTA) and the depressive symptom severity were positively related (b = 1.5 /10 dB; 95% CI) – The more severe the hearing loss, the higher the depressive symptom severity
• The risk of dementia (hazard ratio) is 1.69 for subjects with (SHL) compared to those with normal hearing
• The use of hearing aids (HA-use) and the number of Neuro-Psychiatric-Symptoms (NPS) were negatively related (b = -2.09; 95% CI; p = 0.003) – “Hearing aid users” had a lower number of NPS compared to the “non-users”
• The use of hearing aids (HA-use) and the NPS severity score were negatively related (b = -3.82; 95% CI; p = 0.03) – “Hearing aid users” had a lower severity score of the NPS compared to “non-users”
• The use of hearing aids (HA-use) and the depressive symptom severity were negatively related (b = -2.94; 95% CI; p = 0.05) – “Hearing aid users” had a lower depressive symptom severity compared to the “non-users”

The conclusions of this study: Among patients at a memory clinic, increasing severity of hearing loss was associated with a greater number of Neuro-Psychiatric-Symptoms (NPS), more severe NPS, and more severe depressive symptoms, while hearing aid use was associated with fewer NPS, lower severity, and less severe depressive symptoms. Identifying and addressing hearing loss may be a promising, low-risk, non-pharmacological intervention in preventing and treating NPS.

NATURAL RESEARCH - SCIENTIFIC REPORTS
Sarant J. et al. The Effect of Hearing Aid Use on Cognition in Older Adults: Can We Delay Decline or Even Improve Cognitive Function? Journal of Clinical Medicine. 2020 (ref 13)

This study was conducted in Australia by a researcher from the Department of Audiology and Speech Pathology in the University of Melbourne. Ninety-nine (99) subjects (mean age 72.5 years) were enrolled with confirmed hearing loss and no earlier diagnosis of cognitive impairment. Hearing loss was assessed with tonal audiometry, speech audiometry in quiet and in noise and the Abbreviated Profile of Hearing Aid Benefit (APHAB) questionnaire. Cognition was assessed with the Mini Mental State Examination (MMSE), the CogState Battery, the Groton Maze Learning Test (GML) for executive function, the Detection Test (DET) for psychomotor function, the Identification Test (IDN) for visual attention, the One Card Learning Test (OCL) for visual learning and the One Back Test (ONB) for working memory. All subjects were fitted with hearing aids, these were selected based on the hearing loss, patient preference and communication needs. All were fitted according the NAL-NL2 prescription rule and Real Ear Measurement Verification was used. They had follow-up sessions with fine-tuning and verification after 2 to 4 weeks, further reviews as seen appropriate with their managing audiologist and routinely after 12 and 18 months after fitting by a team audiologist.

Hearing aid use: After 18 months, 59% of the participants used their hearing aids at least 60%–90% of the time.
Results pre/post fitting (after 18 months) on the "CogState" battery for all subjects:

• executive function
 GML pre: 58.8 / GML post: 51 – \(p = 0.001^* \)

• psychomotor function
 DET pre: 2.6 / DET post: 2.6 – \(p = 0.08 \)

• working memory
 ONB pre: 2.96 / ONB post: 2.04 – \(p = 0.21 \)

• visual attention
 IDN pre: 2.8 / IDN post: 2.8 – \(p = 0.87 \)

• visual learning
 OCL pre: 2.94 / OCL post: 2.96 – \(p = 0.26 \)

One would expect a slow rate of decline with this aged group after 18 months, and the use of hearing aids keeps the cognitive test results stable or even improved for executive function.

The conclusions of this study: **Relative stability and clinically and statistically significant improvement in cognition were seen in this participant group of older adults after 18 months of hearing aid use, suggesting that treatment of hearing loss with hearing aids may delay cognitive decline.** Given the small sample size, further follow up is required.

Studies on the relationship between hearing loss and dementia

AGEING, NEUROPSYCHOLOGY, AND COGNITION

Strutt P. et al, Hearing loss, cognition, and risk of neurocognitive disorder: evidence from a longitudinal cohort study of older adult Australians. 2020 (ref 55)

This study used data from 1,037 Australian subjects who took part in the Sydney Memory and Ageing Longitudinal Study. Hearing Loss and the level of hearing loss was based on self-report (Likert type scale 1-4). From the total group, 424 (41%) mean age 79 years, self-reported hearing difficulties and 613 (59%) mean age 78 years, self-reported normal hearing. The cognitive domain was assessed with the "Trail-Making Test" and the "Digit–Symbol Coding Test" for “attention and processing speed”, the Bosting Naming Test for “language”, the Block Design subtest from the WAIS-R for Visuospatial ability, the Rey Auditory Verbal Learning Test (RAVLT) for “learning”, recalling the items from the RAVLT and a story from the Logical Memory subtest from the WMS-III for “recall”, the Controlled Oral Word Association Test, the total time taken to complete the Trail-Making Test Part B for “executive functioning”, and for “Global Cognition”, the results on the earlier items were pooled. An expert panel defined the level of Mild Cognitive Impairment and Dementia for each subject.

- **Mild hearing difficulties were not associated an increased risk for the neurocognitive disorder compared to subjects self-reporting normal hearing Hazard Ratio - HR = 0.93**
- **Moderate-severe hearing difficulties were associated an increased risk for the neurocognitive disorder compared to subjects self-reporting normal hearing Hazard Ratio - HR = 1.84**
- **For subjects with healthy cognition at baseline, significant hearing difficulties emerged as a significant risk factor for MCI during the follow-up period Hazard Ration - HR = 1.59**
The conclusions of this study: This study provides further evidence of the impact of hearing loss on cognitive abilities as well as risk for MCI and dementia in older adults.

OTOTOLOGY AND NEUROTOLOGY

Lin CC., Lin HC. & Chiu HW. Increase Risk of Dementia in Patients with Sudden Hearing Loss: A Population-Based Cohort Study With 7-Year Follow-Up in Taiwan (2020) (ref 37)

This retrospective study used the Taiwan national health insurance (NHI) database to investigate the prevalence and risk of subsequent dementia in individuals with sudden hearing loss (SHL) compared to age and gender matched cohorts within a follow-up period of seven years. The study sample was comprised of 1,858 subjects with SHL and no associated risk factor who were above 40 years of age, and 9,290 control subjects. At the end of the seven-year period, a total of 89 subjects and 478 were still alive in the study cohort group and in the comparison cohort group, respectively.

- The incidence of dementia was 20/1,000 for the group with sudden hearing loss (SHL) compared to 8/1,000 for the control group.
- The risk of dementia (hazard ratio) is 1.69 for subjects with (SHL) compared to those with normal hearing.

The conclusions of this study: This study revealed a relationship between sudden hearing loss and dementia in an Asian country. The risk of dementia was higher among patients with sudden hearing loss compared with matched cohorts during the 7-year follow-up period.

NATURE RESEARCH - SCIENTIFIC REPORTS

Chang Y. et al, Association between the severity of hearing loss and the risk of dementia within the 2010–2017 national insurance service survey in South Korea – 2020 (ref 13)

This longitudinal study was conducted, using the data obtained from the nationwide South Korean National Health Information Database. The available patient data from 2010 to the end of 2017 were used. Hearing loss was determined by a tonal audiogram and the Pure Tone Average (PTA) was calculated at 0.5, 1, 2 and 4 kHz. For severe hearing loss, the PTA needed to be confirmed by Auditory Brainstem Response (ABR) or Auditory Steady State Responses (ASSR). Non-severe hearing loss was defined as a both-side hearing loss with at PTA between 60 and < 80 dB HL. Severe hearing loss was defined as both-side hearing loss with at PTA between 80 and up to ≥ 90 dB HL and speech disorder. Ipsilateral hearing loss was defined as hearing loss with at PTA at the worst ear ≥ 80 dB HL and ≥ 40 dB HL the other ear. Dementia was defined based on the medication that was prescribed.

For all age groups

- The hazard ratio (HR) for all dementia types was 1.34 (95% CI) in the severe HD group.
- The hazard ratio (HR) for all dementia types was 1.31 (95% CI) in the non-severe HD group.
- The hazard ratio (HR) for all dementia types was 1.26 (95% CI) in the ipsilateral HD group.
For all age group younger than 65 years

- The hazard ratio (HR) for all dementia types was 1.93 (95% CI) in the severe HD group
- The hazard ratio (HR) for all dementia types was 1.88 (95% CI) in the non-severe HD group
- The hazard ratio (HR) for all dementia types was 1.60 (95% CI) in the ipsilateral HD group

For all age group ≥ 65 years

- The hazard ratio (HR) for all dementia types was 1.23 (95% CI) in the severe HD group
- The hazard ratio (HR) for all dementia types was 1.28 (95% CI) in the non-severe HD group
- The hazard ratio (HR) for all dementia types was 1.30 (95% CI) in the ipsilateral HD group

The conclusions of this study: This study demonstrates that the impact of hearing loss on dementia incidence is severity-dependent, and the risk increases in patients younger than 65 years of age.

JAMA OTOLARYNGOLOGY – HEAD & NECK SURGERY
Golub, J. et al, Association of Subclinical Hearing Loss with Cognitive Performance. (ref 24)

A total of 5,190 participants from both the Hispanic Community Health Study (HCHS) and 1,392 participants from the National Health and Nutrition Examination Study (NHANES) met the inclusion criteria (older than 50 years, no early onset hearing loss, audiometry and cognitive testing test results available) and were included in this cross-sectional study. Hearing loss was evaluated by pure tone audiometry and the 4 – frequency Pure Tone Average (PTA) was based on the better ear result at 0.5, 1, 2 and 4 kHz. Cognitive Performance was assessed by the Digit Symbol Substitution Test (DSST), Word Frequency Test, Spanish-English Verbal Learning Test (SEVLT) and the Six-Item Screener test.

The relation between hearing loss (PTA) and the Digit Symbol Substitution Test (DSST)

- All subjects (HCHS & NHANES): −1.10 score difference per 10-dB Decrease in Hearing
- Normal hearing, ≤25 dB: −2.28 score difference per 10-dB Decrease in Hearing
- Hearing loss, >25 dB: −0.97 score difference per 10-dB Decrease in Hearing
- Normal hearing, ≤15 dB: −3.94 score difference per 10-dB Decrease in Hearing
- Hearing loss, >15 dB: −0.63 score difference per 10-dB Decrease in Hearing

The conclusions of this study: An independent association was observed between cognition and subclinical Hearing Loss. The association between hearing and cognition may be present earlier in Hearing Loss than previously understood. Studies investigating whether treating Hearing Loss can prevent impaired cognition and dementia should consider a lower threshold for defining Hearing Loss than the current 25-dB threshold.
In this cohort study, 9,017 subjects from the Swedish Twin Registry (mean age 72 years), who met the inclusion criteria at the time of the interview, were enrolled in the study (i.e. 60 years or older, no cognitive issues and information on the 9 risk factors available). The focus of the study was to evaluate 9 potential risk factors for incident dementia: low education, hearing loss, hypertension, obesity, smoking, depression, physical inactivity, diabetes and living alone. Hearing loss was evaluated by self-reporting. Dementia was assessed through patient records, prescribed medication, Mini Mental State Examination and a consensus diagnosis.

- The hazard ratio (HR) of self-reported hearing loss for dementia was 1.29 (95% CI).
- The hazard ratio (HR) of diabetes for dementia was 1.33 (95% CI).

The conclusions of this study: The nine risk factors may have considerable impact as modifiable factors on incident dementia. Hearing loss and diabetes displayed the higher Hazard Ratios and were statistically significantly associated with a higher risk of incident dementia.

In this population-based cohort study, data were used from the National Health Insurance Research Database of Taiwan. In the test group, 8,135 patients with a new diagnosis of hearing loss in the years 2000 and 2011, were enrolled. They were matched (gender, age, residence and insurance fee) with 8,135 subjects with normal hearing in the control group.

- Dementia incidence rate in the Test Group (HL) was 19.38 per 1000 person-year
- Dementia incidence rate in the Control Group (NH) was 13.98 per 1000 person-year
- The dementia incidence rate was significantly higher for the Test Group compared to the Control Group (95% CI)

- Patients with HL had a Dementia Hazard Ratio (HR) of 1.17 (95% CI)
- Female Patients with HL had a Dementia Hazard Ratio (HR) of 1.13 (95% CI)
- Male Patients with HL had a Dementia Hazard Ratio (HR) of 1.20 (95% CI)
- Patients 45-64y with HL had a Dementia Hazard Ratio (HR) of 2.21 (95% CI)
- Patients 65-74y with HL had a Dementia Hazard Ratio (HR) of 1.13 (95% CI)
- Patients ≥75y with HL had a Dementia Hazard Ratio (HR) of 1.07 (95% CI)

The conclusions of this study: In this study, hearing loss was positively associated with a risk of dementia, especially in patients aged 45 to 64 years. Hearing protection, screening, and treatment may be used as strategies for mitigating this potential risk factor.
Studies on animal models of the relationship hearing loss and dementia

CLINICAL AND EXPERIMENTAL OTORHINOLARYNGOLOGY

In this rat-model, on 18 normal-hearing rats (confirmed by Auditory Brain Response ABR), amyloid-β was administered to the brain, at a level that does not lead to cognitive decline but makes the brain more susceptible to risk factors. The group was divided in a test group which underwent surgery for cochlear ablation and a control group which also underwent surgery, but the cochlea was left intact. After 11 weeks, the rats were assessed on cognitive function by different tasks and microarray analysis of the miRNAs (biomarkers for Alzheimer's Disease) was conducted.

• The relative quantification values (RQ) of miRNAs (biomarkers for Alzheimer’s Disease) miR-376a-3p and miR-598-3p were significantly higher for the deaf group compared with the control group (**P<0.01)

• The results of cognitive tasks “object-in-place task (OPT)”, “object location task (OLT)” and “Y-maze test” were significantly poorer for the deaf group compared with the control group (***P<0.001)

The conclusions of this study: These results indicate that the biomarkers for Alzheimer’s Disease miR-376a-3p and miR-598-3p were related to cognitive impairment after hearing loss in a rat-model.

BEHAVIOURAL BRAIN RESEARCH

Chang M. et al, Hearing loss as a risk factor for cognitive impairment and loss of synapses in the hippocampus. 2019 (ref 59)

This study was rolled out in two stages, in the first stage 10 seven-week-old male Wistar rats were studied and in the second stage 26 rats randomly assigned to 4 subgroups

• Normal Hearing – No subthreshold amyloid-β (NH-NA) n=6
• Normal Hearing – Subthreshold amyloid-β (NH-SA) n=6
• Deaf – No subthreshold amyloid-β (D-NA) n=7
• Deaf – Subthreshold amyloid-β (D-SA) n=7

The deaf subgroup had bilateral cochlear ablation surgery, the normal hearing group, had sham surgery. The subthreshold amyloid-β, were receive an infusion with an Aβ peptide solution for two weeks with a dose that does not lead to cognitive decline, but with the intention to create damage to make the brain more vulnerable to development dementia. Pre-surgery, Auditory Brainstem Responses have been measured on all rats, to ensure they were normal hearing. Cognitive performance was evaluated by the Y-maze test (related to working memory), object-in-place task (OPT) the object location task (OLT) and the novel object recognition task (NOR). All these tests were conducted,
before the surgery (baseline and respectively at 7-, 9- and 11-weeks post-surgery.

- The Y-maze task results, were significantly poorer for the deaf SA group than for the normal-hearing SA group 11 weeks after the surgery. \((p=0.014)\) (no significant differences at 7 or 9 weeks)

At 11 weeks after surgery:

- The Y-maze task results were significantly poorer for the deaf SA group than for the 3 other groups: Deaf-NA \((p=0.036)\), NH-SA \((p=0.017)\) and NH-NA \((p=0.003)\)
- The object-in-place task (OPT) results were significantly poorer for the deaf SA group than for the 3 other groups: Deaf-NA \((p=0.003)\), NH-SA \((p<0.0001)\) and NH-NA \((p<0.0001)\)
- The object location task (OLT) results were significantly poorer for the deaf SA group than for the 3 other groups: Deaf-NA \((p=0.009)\), NH-SA \((p<0.0001)\) and NH-NA \((p<0.0001)\)
- There were no significant differences for the novel object recognition task (NOR)

The conclusions of this study: The present results suggest that hearing loss may act as a risk factor for cognitive impairment in Alzheimer’s disease. Additionally, the present findings indicate hearing loss may cause hippocampal synapses to be more vulnerable to subthreshold Amyloid-\(\beta\) (A\(\beta\))-induced damage.

Studies on human brain tissue, biomarker, changes in the relationship hearing loss and dementia

CLINICAL AND EXPERIMENTAL OTORHINOLARYNGOLOGY

Golub J. et al, The Association Between Early Age-Related Hearing Loss and Brain \(\beta\)-Amyloid. Laryngoscope - 2020 (ref 45)

98 participants from the Northern Manhattan Study of Metabolism (New York) (mean age 65 years) were evaluated in this study on hearing loss and brain biomarkers of Alzheimer’s disease. Hearing Loss was measured with pure tone audiometry and speech audiometry. The brain biomarkers were measured in vivo with PET scans and in this study the focus was one of the key biomarkers for Alzheimer’s disease: whole brain \(\beta\)-amyloid standardized uptake value ratio(\(\beta\)-amyloid).

- \(\beta\)-amyloid increased 0.029 (95% CI) for every 10 dB increase in pure-tone average \((P = 0.030)\).
- \(\beta\)-amyloid increased 0.061 (95% CI) for every 10% increase in word recognition score \((P = 0.012)\).

The conclusions of this study: Hearing loss was associated with higher levels of \(\beta\)-amyloid, a key biomarker for Alzheimer’s disease.
PLOS ONE
Delano P. et al, Reduced suprathreshold auditory nerve responses are associated with slower processing speed and thinner temporal and parietal cortex in presbycusis - 2020 (ref 19)

This prospective cohort study is part of the Auditory and Dementia study (ANDES) project in Chile. At the time of enrolment, the subjects need to be dementia free (based on the Mini-Mental State Examination), they can have different levels of hearing loss, but should not be using hearing aids. The audiologic evaluation consisted of pure tone audiometry (PTA), distortion product otoacoustic emissions (DPAOE) and auditory brainstem responses (ABR). Cortical thickness was measured as part of the morphometric analyses. 3T- magnetic resonance imaging (MRI) was performed to measure the volume and thickness of bilateral cortical regions.

The correlation between ABR amplitudes Wave I and cortical thickness (we only list the 5 highest correlations):

• Left hemisphere - Superior parietal: $r = 0.26$ $p = 0.009^{**}$.
• Left hemisphere - Middle temporal: $r = 0.26$ $p = 0.009^{**}$.
• Right hemisphere - Inferior temporal: $r = 0.24$ $p = 0.02^{*}$.
• Left hemisphere - Inferior parietal: $r = 0.23$ $p = 0.02^{*}$.
• Right hemisphere - Medial orbitofrontal: $r = 0.23$ $p = 0.02^{*}$.

The conclusions of this study: These results evidence that reduced suprathreshold auditory nerve responses in presbycusis are associated with slower processing speed and brain structural changes in temporal and parietal regions.

OTOLOGY AND NEUROTOLOGY
Armstrong N. et al, Association of Speech Recognition Thresholds with Brain Volumes and White Matter Microstructure: The Rotterdam Study. 2020 (ref 02)

This study is part of the cross-sectional Rotterdam Study in which a total 14,926 subjects aged 45 years and older participated. For this specific study, 2,368 subjects (average age 65 years) who met the inclusion criteria (audiometric evaluation, cognitively normal, Magnetic Resonance Imaging results) were enrolled. Speech Recognition was assessed with a Digits in Noise Test. Brain volumes and White Matter Microstructure were assessed with Multisequence 1.5T MRI imaging and diffusion tensor imaging (DTI).

• There is a positive correlation between result on the Digit in Noise Test (SRT in dB) and parietal lobe volume (mL): difference in mL=0.24, 95% CI: 0.05. (Poorer central auditory speech processing was associated with larger parietal lobe volume)
• Degrees of auditory performance were not associated with brain volumes and white matter microstructure.

The conclusions of this study: Central auditory speech processing in the presence of both vascular burden and pure-tone average may not be related to brain volumes and white matter microstructure. Longitudinal follow-up is needed to explore these relationships thoroughly.
The economic aspects of hearing care to delay or prevent dementia

APPLIED ECONOMICS

Brent R. A cost–benefit analysis of hearing aids, including the benefits of reducing the symptoms of dementia – 2019 (ref 58)

The data used to estimate the benefits of Hearing Aids to reduce symptoms of dementia come from the National Alzheimer’s Coordinating Center (NACC) in the United States. This NACC data set has been running since 2005 and includes demographic, clinical, diagnostic, and neuropsychological information on participants with normal cognition, mild cognitive impairment, and dementia who visited 32 US Alzheimer’s Disease Centers (ADC). From the full data set, data on 37,544 subjects between 2005 and 2017 were extracted to be used for this study. Quality of Life (QoL) was evaluated with the Geriatric Depression Scale (GDS), short form.

• The lifetime total benefits of purchasing and wearing Hearing Aids are: US$248,425.
• The lifetime Hearing Aid costs are: US$ 8,499.
• This results in a benefit–cost ratio of 29.

The conclusions of this study: Our results confirm the findings in the literature that Hearing Aids reduce the symptoms of dementia. As expected, reducing the symptoms of dementia increases a client’s quality of life, as does improved hearing due to wearing Hearing Aids. We found that the total benefits, mainly coming from the direct benefits, were around a quarter of a million dollars and very large relative to the costs, with a benefit–cost ratio of around 30. However, the indirect benefits were sizeable in that, even if they were the only category of benefits, they alone would be sufficient to cover the Hearing Aids costs. The capacity for Hearing Aids to reduce the symptoms of dementia needs to be acknowledged and added to the list of interventions helping to mitigate the spread of this increasingly prevalent disease.
Now is the time to seize the opportunity for a preventative hearing health strategy that will address the link between age-related hearing loss and dementia.